コンピュータ将棋開発者がAWSで機械学習を回すには?

電王トーナメント直前ですが、AWSを使って機械学習で使う教師局面を生成してみようと思い、昨日実際にやってみたので、そのノウハウを書いておきます。ノウハウというか、たぶんLinuxに慣れているような人なら誰でも知っているはずのことで、誰得記事ではあるのですが、私は大いに躓いたので記録として残しておきます。

続きを読む

評価関数のキメラ化コマンド公開しました

『Shivoray』(全自動雑巾絞り機)以降、誰でも評価関数を自分で育成することが出来るようになった。教師局面の生成に用いる定跡を変えることで異なった進化を遂げることも徐々に明らかになってきた。今回はこの流れを加速すべく、キメラ化コマンドを公開することにした。

続きを読む

従来手法に基づくプロの棋譜を用いない評価関数の学習

先日、elmo絞りを用いればプロの棋譜から学習をスタートさせなくともプロレベルの将棋ソフトになることを実証したが、実はelmo絞りを用いず、従来手法でも同じことが出来ることをここに手短に示す。

続きを読む

人間の棋譜を用いずに評価関数の学習に成功

今回、新たに評価関数をゼロベクトルから学習させた。elmo絞りを使うと意外と簡単にApery(WCSC26)相当の棋力を持つ評価関数にまで出来るようだ。追試できるように記事の前半に手順を記しておく。また、記事の後半には何回目のelmo絞りでどの程度の強さであったかも示す。

続きを読む